На сколько процентов используется мозг: На сколько процентов работает человеческий мозг: мифы и правда – Сто лет назад кто-то сказал, что мы используем свой мозг на 10 процентов? 12 заблуждений про человеческий мозг | Наука. Грани реальности

Содержание

На сколько процентов работает мозг человека

Головной мозг – самый сложный орган позвоночных и человеческого организма, в частности. Каждую секунду он обрабатывает феноменальное количество информации, и до сих пор ученые некоторые его структурные особенности и функции не изучили досконально. Он отвечает за процесс сознания, мышление, речь, координацию движений, сон и бодрствование, эмоциональные переживания, гормональные изменения, дыхание, многочисленные рефлексы и т. д.

На фоне этих фактов утверждение, что человек задействует свой мозг только на 10, а не на 100 процентов выглядит правдоподобным. Подобное убеждение прочно укоренилось в сознании многих, но специалисты говорят, что оно не соответствует истине и относится к легенде.

Они приводят ряд доводов в пользу того, что это всего лишь миф – человеческий мозг задействован на 100 %.

Корни мифа

Не существует точных данных, откуда зародилась эта легенда, но выдвигаются предположения.

  1. В конце 19 века У. Джеймс и Б. Сидис, изучая способности ребенка в рамках теории ускоренного развития, пришли к выводу, что мозг человека может быть развит не на 100 процентов и потенциал его велик. После чего Л. Томас в предисловии к книге Д. Карнеги упомянул об этом предположении и сказал, что люди используют свой мозг только на 10 процентов.
  2. Некоторые нейробиологи, опираясь на исследования о функционировании отделов коры больших полушарий, ответили на вопрос «сколько процентов мозга использует человек» – «в каждый момент времени – 10 %», что впоследствии привело к усечению утверждения.

С того момента легенда стала основой для написания многих художественных книг, создания фильмов. Ею стали пользоваться некоторые предприимчивые «психологи» и «экстрасенсы», создавая тренинги и курсы, которые призывают раскрыть свой потенциал.

Миф о том, что мозг развит или задействует только 10 процентов, оказался живуч, благодаря своей привлекательности – человеку приятно верить в то, что он может усовершенствовать свой мозг, что он способен на большее и, возможно, обладает сверхъестественными возможностями, которые «спят».

На самом деле

Многочисленные исследования смогли ответить на вопрос «на сколько процентов работает мозг человека». Они показали, что при выполнении обычных действий (легкий разговор, ходьба, прослушивание музыки) требуется активация абсолютно всех участков головного мозга.

Другие аргументы в пользу того, что действуют все 100 %:

  1. Черепная травма средней и тяжелой степени всегда приводит к нарушению или выпадению функций. Если бы человеческий мозг был развит только на 10 процентов, то никакой разницы бы человек не смог заметить.
  2. Он не смог бы увеличиться до таких больших размеров, каков он сейчас. Если бы была задействована только одна десятая часть, то она бы составила не более 140 грамм – что примерно соответствует мозгу овцы.
  3. Непреложен факт, что на работу мозговых процессов затрачивается 20 процентов энергии человеческого тела. Это большое количество, и маловероятно, что оно бы выделялось на обслуживание «спящего» органа.
  4. Никакой, даже самый гениальный ученый, не смог бы высчитать процент работающих нейронов в начале двадцатого века по причине отсутствия таких технических средств.

Некоторыми в подтверждение того, что мозг развит только на 10 %, приводятся аргументы, касающиеся ускорения и улучшения мыслительных процессов. Однако они связаны с различными методами обучениями и тренировкой, но не активизацией «спящих» зон.

Итак, на вопрос «сколько процентов мозга использует человек?», существует единственно правильный ответ – 100. Задействование только 10 процентов невозможно – организм должен все время функционировать для поддержания своей деятельности. Миф остается еще весьма укорененным в сознании многих, а некоторые специалисты утверждают, что на его поддержание тратятся немалые средства: киноиндустрия, ТВ-программы и шоу часто используют его в качестве завлечения.

Оцените эту статью:

Всего голосов: 155

4.5 155

Читайте также

«Как устроен мозг?» – Яндекс.Кью

Мозг – сложная саморегулирующаяся эволюционирующая система. Она состоит из астрономического числа элементов. Они называются нейронами, и между собой они соединены в нейрональные сети.

Нейроны – это особые клетки нервной системы, которые обладают свойством активироваться, т.е. генерировать импульсы (вспышки) электрического тока. Эти вспышки передаются другим нейронам, которые с этим нейроном связаны. Связанные друг с другом нейроны образуют нейрональную сеть. Этих сетей в мозгу очень много, и они специализированы на восприятии разных сигналов (зрительных, слуховых, обонятельных, осязательных и т.п.), на организации действий, на извлечении информации из памяти, на формировании эмоций и обработке информации о состоянии вегетативных функций организма (например, концентрациии сахара в крови) и т.д.
Информация в мозг попадает через специальных клетки — рецепторы, «наружные» части органов чувств (клетки сетчатки глаза, волосковые клетки улитки слухового аппарата и т.п.). Приходящая информация активирует нейрональные сети, специфически настроенные на определенные «черты», «признаки», особенности, свойственные этой приходящей информации. Эта активация характеризуется тем, что все нейроны активированной сети разряжаются с одинаковой частотой, и возникает синхронизированная активность в этой сети нейронов. В результате обучения, взаимодействия организма с внешней средой, специфические паттерны, «рисунки» активности нейронных сетей формируют представления об объектах внешнего мира (т.н. система «Что?») и о пространстве (т.н. система «Где?»).
Эти паттерны трансформируются в мозгу, в глубине височной доли, в гиппокампе, «перезаписываются», перекодируются с учетом предыдущего сходного опыта и записываются в долговременную память. «Запрос» может вызвать извлечение этой информации из памяти путем активации тех нейрональных сетей, где эта информация записана.
В лобных областях мозга на основании входов от сенсорных систем, памяти и от системы регуляции эмоций (которая включает информацию о состоянии внутренних систем организма) формируются представления о текущих требованиях организма и принимается решение об организации того или иного действия. Эта информация проходит несколько стадий дальнейшей обработки и поступает в моторную кору мозга, а затем и на мотонейроны – нейроны, управляющие движениями мышц. И тогда человек действует.

На сколько процентов работает мозг человека

Принято считать, что мозг человека работает только на 10% (по другим источникам – на 5%, 7%). Этот миф передается из поколения в поколение. Его поддерживают 2/3 общества и половина преподавателей общественных наук. На самом деле головной мозг всегда функционирует на 100%. Он просто не использует все свои отделы для решения текущих задач.

На сколько человек использует свой мозг

Мозг – наиболее энергозатратная часть организма. Он составляет всего 2% от всей массы тела, но при этом потребляет 20% всей суточной нормы глюкозы. Вся эта энергия идет на поддержание заряда на поверхности нейронов, генерацию и передачу нервного импульса. Поскольку мозг ежесекундно анализирует множество информации и отсылает команды к разным структурам, энергии на его работу нужно много.

В каждый отдельный момент времени процент работающих нейронов колеблется в пределах от 1 до 16%. Это связано с особенностями строения центральной нервной системы. Она разделена на отделы, которые отвечают за разные функции – движение, память, ощущения, рефлексы и т.д. Каждый из них не может работать постоянно и «включается» только когда в нем возникает потребность. Отсюда и миф о «неполной» работе нервной ткани.

Знаете ли вы

У взрослого человека центральная нервная система потребляет 20% дневной нормы глюкозы, у детей – 50%, у младенцев – 60%.

Как возник миф о работе мозга

При изучении работы центральной нервной системы возникло недопонимание. Ученые при исследованиях о том, сколько процентов мозга использует человек, долгое время не могли выяснить предназначение лобной и обширных зон теменной доли головного мозга. Их повреждения не вызывали двигательную или чувствительную недостаточность, поэтому было решено, что они не используются. На протяжении десятилетий эти части назывались «тихими», и их функции были неуловимыми. Позже в ходе исследований ученые получили информацию, что эти зоны отвечают за интеграцию. Без них человек не мог бы называться человеком. Их «работа» – принятие решений, адаптация в окружающей среде. После этого выяснилось, что у мозга нет нерабочих зон.

Опровержение мифа

Исследователи представили несколько контраргументов против суждения о неполном использовании мозга человеком:

  • Закон эволюции гласит, что с каждым поколением все живое становится совершеннее – отсекается лишнее, улучшаются адаптационные возможности. Поэтому если бы 90% мозга не использовалось, закон усовершенствования давно бы избавил его от «ненужных» нейронов и оставил только те, которые работают.
  • Такие методы исследования как позитронно-эмиссионная и функциональная магнитно-резонансная томография позволяют сканировать нервную систему во время работы. Это оборудование зафиксировало минимальную функциональную активность мозга даже во время сна. Зоны, где ничего не происходило в течение долгого времени, не обнаружились. Такое наблюдалось только в случае повреждения нервной ткани.
  • Известны функции каждого из отделов центральной нервной системы и не обнаружено ни одного, который бы ни за что не отвечал, «не работал».
  • Нервные клетки, которые не используются, способны к деградации. Это происходит при многих нервных заболеваниях. Поэтому независимо от того, на сколько процентов работает мозг человека, отдельные его нейроны должны периодически использоваться, чтобы не атрофироваться. Согласно теории о частичной работе нервной системы, человек постоянно бы деградировал.
  • Микроструктурный анализ: ученые имеют возможность изучать работу отдельно взятых клеток. Если бы 90% мозга не работало, это бы обнаружилось при этом исследовании.

Знаете ли вы

Для максимальной эффективности работы мозга должны быть активными от 1 до 16% его клеток.

Способности мозга

Получить сверхспособности посредством увеличения активности мозга невозможно. Но развить интеллект вполне реально. Центральная нервная система работает на основе связей между нейронами (синапсов). Поэтому для более эффективной работы мозга нужно образовать больше связей между нейронами, усваивать больше информации.

Наиболее быстро и легко эти связи формируются у детей, которые познают мир – учатся говорить, чувствовать, читать. С возрастом скорость и количество образуемых связей снижается. Вместе с этим уменьшается и способность обучаться. Существуют специальные упражнения, которые повышают воспринимающую способность головного мозга и увеличивают эффективность его работы.

На сколько процентов работает мозг человека? Узнайте, сколько процентов мозга использует человек

Ученые еще с очень давних пор пытались узнать, на сколько процентов работает мозг человека. Эти поиски не раз приводили к всевозможным заблуждениям и ложным теориям. Одни исследователи утверждают, что человек использует мозг на один лишь процент от имеющегося потенциала, другие дают 15-20 процентов. Обычные же люди начинают возражать и отмечают, что мозг у них работает всюду и всегда, обеспечивая дыхание, сердечный ритм и много чего еще. Безусловно, это так. Но, говоря о том, на сколько процентов работает мозг человека, ученые подразумевают скрытые возможности и интеллектуальный потенциал.

на сколько процентов работает мозг человека

Немного анатомии

ЦНС включает в себя головной и спинной мозг, которые, в свою очередь, представлены двумя видами клеток: нейронами и глиоцитами. Нейроны выступают главными носителями информации, принимают входные сигналы через дендриты, напоминающие ветки деревьев, и отсылают выходные сигналы по аксонам, похожим на кабели. Каждый нейрон включает до десяти тысяч дендритов и всего лишь один аксон. Зато аксоны могут быть в тысячу раз длиннее самих нейронов: до четырех с половиной метров. Области, где соприкасаются дендриты и аксоны, именуются синапсами. Это нечто вроде тумблеров, соединяющих между собой нейроны и превращающих мозг в единую сеть. Именно в синапсах электрические импульсы трансформируются в химические сигналы.

Глиоциты – клетки мозга человека, служащие каркасной конструкцией, они играют роль чистильщиков, устраняют отмершие нейроны. Всего же глиоцитов в пятьдесят раз больше, нежели нейронов. Особенности мозга человека таковы, что в нем одновременно присутствуют до двухсот миллиардов нейронов, пять миллионов километров аксонов, один квадриллион синапсов. Число вариантов совершения обмена информацией превышает содержание атомов во Вселенной. Действительно, потенциал безграничен. Почему тогда мы лишь в такой малой степени задействуем мозг? Попробуем разобраться.

Уровень нагрузки

Приведем пример. Допустим, выпускнику математического факультета и тридцатилетнему алкоголику дали одинаковое задание: умножить 63 на 58. Действие совсем несложное, но кому из них для его осуществления придется задействовать больший процент мозга? Немудрено догадаться, что второму. А почему? Потому что математик умнее? Вовсе нет. Просто он более натренирован в этом деле, и для решения примера ему требуется гораздо меньшая нагрузка. Однако изначально и у одного, и у второго человека возможности приблизительно равные. И число нейронов у них также примерно одинаково. Различие состоит только в количестве взаимосвязей между ними, но, как известно, разорванные связи можно восстановить и даже обзавестись новыми. Поэтому у алкоголика возможности для интеллектуального роста, безусловно, есть.

Опыты на обезьянах

Майкл Мезернич, преподаватель университета из Сан-Франциско, интересующийся тем, на сколько процентов работает мозг человека, провел несколько опытов на обезьянах. Он посадил животных в клетки, а за их пределами поместил контейнеры с бананами. Пока приматы пытались достать фрукты, Мезернич делал компьютерные снимки их мозга. Он установил, что по мере развития умений обезьян увеличивалась и площадь той части мозга, которая обеспечивала выполнение задачи. Как только животные смогли полностью овладеть техникой и с легкостью извлекать бананы, рассматриваемый участок мозга приобрел прежние размеры. Таким образом, связи нейронов укрепились, и реакции стали протекать уже без приложения усилий, автоматически. А это сразу же открыло потенциал для еще большего роста.

Экстремальные ситуации

Сколько процентов мозга использует человек, находясь в экстремальной ситуации? Точной цифры никто не скажет, однако известно, что в этом случае скорость восприятия растет просто фантастическими темпами. Некоторые пережившие катастрофы люди отмечали, что чувствовали в момент опасности, что время будто остановилось, и это давало им возможность для маневров. Неплохо было бы, чтобы такая способность была нам присуща и в повседневной жизни, а не только в период сильного потрясения. Но возможно ли это? Если и возможно, то крайне опасно. Только представьте, сколько энергии требуется мозгу в таком состоянии!

Мистические способности

Есть люди, которые силой мысли двигают предметы, вращают стрелки на часах, рассеивают лучи лазера и тому подобное. Наверняка многие слышали о таких магах и чародеях. Кто они – сверхлюди или мистификаторы? А может, такие способности есть у каждого из нас, просто они дремлют? Возможно, природа намеренно ограничивает нас, сохраняя запас на какой-либо непредвиденный случай. Важно не то, на сколько процентов работает мозг человека, а то, каким образом мы расходуем интеллект. Чем люди умнее, тем больше они стремятся удовлетворять свои эгоистичные потребности. Так, Гитлер был очень одаренным человеком, но что из этого вышло? Море слез, океаны крови. Приведем в пример других гениев: Никола Тесла, Альберт Эйнштейн, Леонардо да Винчи. В своей жизни они многого достигли, однако известно, что были алчными, эгоистичными и властолюбивыми. Дали бы кому-то из них в руки власть, возможно, последствия были бы такими же.

клетки мозга человека

Сколько процентов мозга использует человек

Если люди не меняются внутренне, не растут духовно, то и свои скрытые способности применять не могут. Так все-таки, какой процент мозга использует человек? Чтобы удовлетворить животные инстинкты, нам хватит и трех процентов. Чтобы суметь обеспечить себя едой – еще два. Для формирования коммуникативных навыков достаточно пяти процентов, столько же требуется для процесса обучения. Вот, в общем-то, и все! Темные кладовые мозга могут раскрыться перед нами только в том случае, если мы будем стремиться к большему, заниматься развитием когнитивных способностей, решать логические задачи и головоломки, познавать мир и совершенствовать себя как личность.

Как работает мозг

Количество нейронов в мозге новорожденного ребенка больше, нежели у взрослого. Однако между клетками еще почти нет связей, поэтому малыш не может грамотно использовать свой мозг. Изначально новорожденный почти не слышит и не видит. Если даже нейроны сетчатки чувствуют свет, они не могут передать информацию в кору больших полушарий, потому как еще не образовали связей с другими нейронами. То есть глаза свет видят, но мозг это не воспринимает. Постепенно нужные связи образуются, взаимодействующая со зрением часть мозга активизирует работу, в результате ребенок начинает видеть свет, затем – силуэты предметов, цвета, оттенки и так далее. Но наиболее удивительно, что такие связи способны образовываться лишь в детстве.

Развитие навыков и умений

Скажем, когда ребенок не мог ничего видеть в раннем возрасте из-за врожденной катаракты, то даже если ему в уже взрослом состоянии сделают операцию, он все равно будет слепым. Это подтверждают жестокие опыты, проводимые на котятах. Им зашивали глаза, когда они только появлялись на свет, а снимали швы уже во взрослом возрасте. Несмотря на то, что глаза у животных были здоровыми и видели свет, они так и оставались слепыми. Это же относится к слуху и в определенной степени к иным способностям: осязанию, вкусу, обонянию, речи, чтению, ориентации в пространстве и так далее. Отличный пример – дети-маугли, воспитанные животными в лесу. Поскольку в детстве они не тренировали умение говорить, во взрослом возрасте им будет не под силу освоить человеческую речь. Зато они могут ориентироваться в пространстве так, как не сможет никто из людей, выросших в цивилизации.

Как повысить эффективность работы мозга

Из всего вышесказанного можно сделать вывод, что то, на сколько процентов работает мозг человека, зависит от степени его натренированности. Чем больше загружен мозг, тем эффективнее он функционирует. Причем у детей он более восприимчивый и гибкий, поэтому им легче приспособиться к новой ситуации, например, освоить компьютерную программу, выучить иностранный язык. Кстати, никогда не знаешь, как именно проявится приобретенное в детском возрасте умение. К примеру, человек, который, будучи ребенком, занимался лепкой, рисованием, вязанием, каким-либо видом рукоделия и тем самым тренировал мелкую моторику рук, имеет все шансы стать отличным хирургом и с легкостью осуществлять точные, филигранные операции, при которых любое неверное движение может привести к неудаче. Вот почему тренировать мозг следует с самого детства. И тогда любые великие открытия будут по силам!

Мозг работает только на 10%?

Существует один очень бородатый и не убиваемый миф о том, что человеческий мозг используется только на 10%. Миф обрел невероятную популярность после выхода в прокат фильмов «Области тьмы» и «Люси». По мнению многих людей, если каким-то образом научиться использовать большее количество мозга, можно стать умнее, креативнее или даже обрести сверхспособности. Правда ли это? И на сколько процентов работает наш мозг?

Проблема 10% мозга.

Основная проблема данного утверждения состоит в его неопределенности. Сторонники мифа то и дело говорят о 10% (в некоторых случаях о 7% или 5%, а то и меньше), но не уточняют 10% чего. Попробуем рассмотреть все возможные варианты и последовательно их опровергнуть.

Работает только 10% от всего объема мозга.

Это заблуждение легче всего опровергнуть. Если бы человек не использовал 90% своего мозга, то повреждение этих частей в большинстве случаев не приводили бы ни к чему страшному. В реальности же, каждый отдел мозга отвечает за свои функции, и даже самые простые процессы, такие как приседания или сжатие кулака задействуют несколько отделов мозга, что уже гораздо больше, чем 10%. Более того, даже очень небольшое повреждение любого из отделов мозга может привести к очень серьезным последствиям. Не даром операции на мозге считаются одними из самых сложных и опасных в медицине.[1]

Да, бывают случаи, когда люди остаются вполне работоспособными даже после очень серьезных повреждений головного мозга.[2] Но этот факт лишь показывает, что некоторые отделы мозга способны брать на себя часть обязанностей других отделов. Тем более не стоит забывать, что эволюция «не любит» ничего лишнего, если бы нам не нужны были какие-либо участки мозга, можно с уверенностью утверждать, что их у нас бы не было.

Мозг использует только 10% от всех клеток мозга.

В человеческом мозге есть 2 типа клеток: нейроны и глиальные клетки. Первые отвечают за получение, обработку и передачу информации, вторые – за то, чтобы нейроны нормально функционировали. [3]

С одной стороны, утверждение действительно имеет смысл. Дело в том, что глиальные клетки, по мнению ученых играют вспомогательную роль и их количество в 10-50 раз больше, чем количество нейронов (и это при том, что в нашем теле примерно 85млрд нейронов).
С другой стороны, утверждение теряет всякий смысл если учесть то, что вспомогательные клетки играют важнейшую роль в жизни нейронов. Они не только помогают нейронам развиваться, но и даже принимают непосредственное участие в их восстановлении при повреждениях.[4][5]

Мозг использует только 10% нейронов.

Это утверждение также не верно. Учеными было доказано, что бездействующих нейронов не бывает. При простое нейроны атрофируются и умирают.[6]

Мозг одновременно использует только 10% нейронов.

Это утверждение тяжело доказать или опровергнуть, так как сначала придется посчитать все активные нейроны, а потом еще и доказать, что их количество равно 10% от всех нейронов в мозге. Так или иначе, мозг действительно не задействует все нейроны одновременно, так как это просто не нужно. В человеческом теле огромное количество нервных клеток, и все они за что-то отвечают: зрение, слух, движения, мысли и т.д. Если предположить, что все нервные клетки вдруг разом активируются, то человек будет испытывать, что-то, что невозможно описать. Представьте себе человека, который хаотично двигает всеми частями тела, испытывает зрительные и слуховые галлюцинации, и при этом чувствует все эмоции сразу.

В мозге развито только 10% нейронных связей.

Это, пожалуй, самая неоднозначная и трудноопровержимая гипотеза. Нейроны начинают связываться между собой сразу же после нашего появления на свет, и происходит это как результат освоения каких-либо навыков.[7]

Например, при рождении, зрение ребенка развито очень слабо, он не способен различать цвета и нормально фокусировать взгляд.[8][9] Все эти навыки приходят в течении первых месяцев жизни и развиваются именно благодаря тому, что зрительные нервы все больше и больше развивают свою связь с мозгом. Тот же процесс происходит со слухом, движениями и другими нашими способностями. Более того, некоторые особо важные навыки могут развиться только в раннем детстве. Опытным путем было доказано, что если после рождения на несколько месяцев завязать глаза котятам, то после снятия повязки они останутся слепыми.[10] Это происходит именно из-за того, что в определенный промежуток времени связь между зрением и мозгом так и не была развита.

Вы никогда не задумывались над тем, почему детские игрушки такие яркие и разноцветные? Это делается не случайно, а именно для того, чтобы ребенок научился различать как можно больше цветов. Каждый из нас, наверняка, был свидетелем ситуации, в которой одному человеку казалось, что он видит темно-синий цвет, а другой говорил, что цвет — просто черный. Из этого можно сделать вывод, что у человека, который видит темно-синий цвет зрение более развито.

Человек развивает нейронные связи в течении всей своей жизни. Это происходит, когда мы учимся играть на фортепиано, говорить на новом языке или изучаем новые приемы каратэ. Но способность развивать нейронные связи постепенно ослабевает, вот почему дети все схватывают на лету, а взрослым порой нужны месяцы, чтобы освоить микроволновку.

Совершенно точно, что мозг человека не развивает все возможные нейронные связи, но говорить о каких-либо процентах здесь не приходится, глупо даже пытаться оценить работу мозга с помощью цифр. Ведь навряд ли есть способ подсчитать все возможные навыки и знания человека, и еще менее вероятно, что кто-либо способен развить их все в себе (представьте кого-то, кто знает и умеет абсолютно все).

Некоторые связывают 100% развитие нейронных связей с экстрасенсорными способностями, но доказать это также очень сложно, впервую очередь из-за того, что не доказано само существование таких способностей.[11]

На сколько процентов работает мозг человека?

Утверждать, что человек использует мозг только на несколько процентов — крайне не правильно. В то же время, совершенно логичным будет предположение, что нет предела для развития и получения новых знаний. Несмотря на то, что мозг остается самым неизученным органом человека, кое-что мы знаем точно: чтобы мозг лучше работал его нужно тренировать, причем делать это нужно с раннего детства. Не верьте в «сказки» о том, что мозг какого-либо ученого был развит на несколько процентов больше, чем мозг обычных людей. Степень развития мозга зависит только от Вас и от того, как вы его тренируете.

На сколько процентов мы используем свой мозг?

28 Июля 2017

Уровеньначальный

Цитата из 1-го тома Основ Ииссиидиологии, пункт 1.0264: «Для Формо-Творцов биологических аналогов НУУ-ВВУ-Формо-Типов таким ограничением является скорость протекания биохимических реакций в организме, поскольку все процессы мышления, чувствования и любой психоментальной обработки Информации, также как и деятельность системы Восприятия (органов чувствования и мышления), основаны  на последовательности биохимических взаимодействий. Сейчас Формо-Творцы нашего мозга могут использовать его потенциал лишь на 4-6%. Но в более благоприятных вариантах нашего «будущего», где мы с вами всё ещё продолжаем фокусироваться в биологических аналогах НУУ-ВВУ-Формо-Типов, мы сумеем повысить этот показатель за счёт целенаправленной стимуляции отдельных зон, а также значительного  снижения активности в Фокусной Динамике Формо-Творцов наших Форм Самосознаний СФУУРММ-Форм низкочастотных Уровней (низших Уровней первой пары ИИССИИДИ-Центров)«.

ВОПРОС: Значит ли это, что мы не полностью используем свой мозг? Если это так, то в таком случае какие его части в приоритете, а какие – нет?

Этот вопрос является результатом неверной, превратной интерпретации написанного мной материала. Неверно само Представление о том, что люди используют свой мозг частично. Указанные проценты (у одних людей – это 4-6%, у других – 7-9%, у наиболее развитых – 9-11%) отражают процент от общего творческого потенциала предельной функциональности биологического варианта мозга, свойственного нашим димидиомиттенсным ФС. В реальности же каждый человек использует нейроанатомические особенности своего мозга на все 100%. При этом каждый отдел мозга выполняет свойственную ему функцию в тех пределах, которые обусловлены особенностями его строения и сформированными нейронными взаимосвязями.

Да, какие-то участки в разные периоды  функционируют более интенсивно, какие-то – менее, но полное отсутствие их активности в нашем жизненном творчестве невозможно. Дело в том, что сам мозг так устроен и организован, что способен выбирать для работы своих нейро-Творцов удобные и экономичные режимы, решая вместо «нас», сколько (и не больше!) нужно и можно израсходовать энергии для нормального функционирования нашего организма. Но на любом этапе нашего субтеррансивного развития реализационный ресурс системы Восприятия фокусируемого нами НУУ-ВВУ-Формо-Типа, в огромной степени обусловленный особенностями архитектуры и активностью нейронных сетей головного мозга и ЦНС в целом, используется на все 100%!

Множество высоковибрационных зон, предполагающих наличие и развитие в коре и подкорке головного мозга ФС особых нейронов, способных обрабатывать Энерго-Информацию высокой мощности, у большинства людей либо пока ещё не проявились, либо находятся в «зародышевом», нефункциональном состоянии. Их можно развивать путём последовательной целенаправленной интенсификации и усложнения психоментальных процессов (медитации, чтения интеллектуальной литературы, просмотра мудрых фильмов, пения Айфааровских Песен, игры в шахматы и.т.п.).

Также нужно иметь в виду, что мозг наших ДМ-Интерпретаций существенно отличается от нашего нынешнего не только своей менее разнообразной по характеру, но более универсальной по функциям клеточной структурой (каждый нейрон симультанно задействован в биллионах синапсов!) и гораздо более сложной анатомией (архитектурой), другими размерами, наличием совершенно новых образований и центров и более интенсивной работой ныне функционирующих у нас областей (вентро- и дорсолатеральных, вентромедиальных областей префронтальной коры, верхних височных извилин, эпифиза, передней поясной извилины, гипофиза,  гипоталамуса и др.), а также отсутствием тех центров, которые обеспечивают реализацию жизненного творчества унгов и ссвооунов.

Но и о мозге наших ДМ-Форм также можно утверждать, что они лишь частично используют тот интеллектуально-чувственный Потенциал, которым обеспечивается жизненное творчество Наших с Вами транслюценсных ФС через функционирование ещё более универсальных (небиологических) аналогов мозга и ДНК.


ФС — Форма Самосознания
ДМ — димидиомиттенсный
ЦНС — центральная нервная система

(ответ №32, 22-06-2017)

Головной мозг человека — Википедия

Головной мозг взрослого человека в разрезе

Головно́й мозг челове́ка (лат. encephalon ) является органом центральной нервной системы, состоящей из множества взаимосвязанных между собой нервных клеток и их отростков.

Головной мозг человека занимает почти всю полость мозгового отдела черепа, кости которого защищают головной мозг от внешних механических повреждений. B процессе роста и развития головной мозг принимает форму черепа.

В литературе приводятся различные оценки количества нейронов, содержащихся в головном мозге человека. По одним оценкам головной мозг взрослого мужчины содержит в среднем 86,1 +/- 8,1 млрд нейронов и 84,6 +/- 9,8 млрд не нейронных клеток. При этом кора головного мозга содержит 19% нейронов. [1] По другим оценкам головной мозг человека содержит 90—95 миллиардов нейронов[2][3].

Головной мозг потребляет для питания 50 % глюкозы, вырабатываемой печенью и поступающей в кровь[4].

Головной мозг человека в сагиттальном разрезе, с русскими наименованиями крупных мозговых структур Головной мозг человека, вид снизу, с русскими наименованиями крупных мозговых структур

Масса человеческого мозга колеблется от 1000 до более чем 2000 граммов, что в среднем составляет приблизительно 2 % массы тела. Мозг мужчин имеет массу в среднем на 100—150 граммов больше, чем мозг женщин, однако статистической разницы между соотношением размера тела и мозга у взрослых мужчин и женщин не обнаружено[5]. Распространено мнение, что от массы мозга зависят умственные способности человека: чем больше масса мозга, тем одарённее человек. Однако очевидно, что это далеко не всегда так[6]. Например, мозг И. С. Тургенева весил 2012 г[7][8], а мозг Анатоля Франса — 1017 г[9]. Самый тяжёлый мозг — 2850 г — был обнаружен у индивида, который страдал эпилепсией и идиотией[10][11]. Мозг его в функциональном отношении был неполноценным. Поэтому прямой зависимости между массой мозга и умственными способностями отдельного индивида нет.

Однако на больших выборках в многочисленных исследованиях обнаруживается положительная корреляция между массой мозга и умственными способностями, а также между массой определённых отделов мозга и различными показателями когнитивных способностей[12][13]. Ряд учёных[кто?], однако, предостерегает от использования этих исследований для обоснования вывода о низких умственных способностях некоторых этнических групп (таких как австралийские аборигены), у которых средний размер мозга меньше[14]. Ряд исследований указывает, что размер мозга, почти полностью зависящий от генетических факторов, не может объяснить бо́льшую часть различий в коэффициенте интеллекта[15][16][17]. В качестве аргумента, исследователи из Университета Амстердама указывают на существенную разницу в культурном уровне между цивилизациями Месопотамии и Древнего Египта и их сегодняшними потомками на территории Ирака и современного Египта[18].

Степень развития мозга может быть оценена, в частности, по соотношению массы спинного мозга к головному. Так, у кошек оно — 1:1, у собак — 1:3, у низших обезьян — 1:16, у человека — 1:50. У людей верхнего палеолита мозг был заметно (на 10—12 %) крупнее мозга современного человека[19] — 1:55—1:56.

Строение головного мозга человека

Объём мозга большинства людей находится в пределах 1250—1600 кубических сантиметров и составляет 91—95 % ёмкости черепа. В головном мозге различают пять отделов: продолговатый мозг, задний, включающий в себя мост и мозжечок, эпифиз, средний, промежуточный и передний мозг, представленный большими полушариями. Наряду с приведённым выше делением на отделы, весь мозг разделяют на три большие части:

  • полушария большого мозга;
  • мозжечок;
  • ствол мозга.

Кора большого мозга покрывает два полушария головного мозга: правое и левое.

Головной мозг, как и спинной, покрыт тремя оболочками: мягкой, паутинной и твердой.

Мягкая, или сосудистая, оболочка головного мозга (лат. pia mater encephali) непосредственно прилегает к веществу мозга, заходит во все борозды, покрывает все извилины. Состоит она из рыхлой соединительной ткани, в которой разветвляются многочисленные сосуды, питающие мозг. От сосудистой оболочки отходят тоненькие отростки соединительной ткани, которые углубляются в массу мозга.

Паутинная оболочка головного мозга (лат. arachnoidea encephali) — тоненькая, полупрозрачная, не имеет сосудов. Она плотно прилегает к извилинам мозга, но не заходит в борозды, вследствие чего между сосудистой и паутинной оболочками образуются подпаутинные цистерны, наполненные спинномозговой жидкостью, за счет которой и происходит питание паутинной оболочки. Самая большая, мозжечково-продолговатая цистерна, размещена сзади четвёртого желудочка, в неё открывается срединное отверстие четвёртого желудочка; цистерна боковой ямки лежит в боковой борозде большого мозга; межножковая — между ножками мозга; цистерна перекресток — в месте зрительной хиазмы (перекресток).

Твёрдая оболочка головного мозга (лат. dura mater encephali) — это надкостницы для внутренней мозговой поверхности костей черепа. В этой оболочке наблюдается наивысшая концентрация болевых рецепторов в организме человека, в то время как в самом мозге болевые рецепторы отсутствуют (см. Головная боль).

Твердая мозговая оболочка построена из плотной соединительной ткани, выстланной изнутри плоскими увлажненными клетками, плотно срастается с костями черепа в области его внутренней основы. Между твердой и паутинной оболочками находится субдуральное пространство, заполненное серозной жидкостью.

Компьютерная томограмма головного мозга

Продолговатый мозг[править | править код]

Продолговатый мозг (лат. medulla oblongata) развивается из пятого мозгового пузырька (дополнительного). Продолговатый мозг является продолжением спинного мозга с нарушенной сегментальностью. Серое вещество продолговатого мозга состоит из отдельных ядер черепных нервов. Белое вещество — это проводящие пути спинного и головного мозга, которые тянутся вверх в мозговой ствол, а оттуда в спинной мозг.

На передней поверхности продолговатого мозга содержится передняя срединная щель, по бокам которой лежат утолщённые белые волокна, называемые пирамидами. Пирамиды сужаются вниз в связи с тем, что часть их волокон переходит на противоположную сторону, образуя перекресток пирамид, образующих боковой пирамидный путь. Часть белых волокон, которые не перекрещиваются, образуют прямой пирамидный путь.

Мост[править | править код]

Мост (лат. pons) лежит выше продолговатого мозга. Это утолщённый валик с поперечно расположенными волокнами. По центру его проходит основная борозда, в которой лежит основная артерия головного мозга. По обе стороны борозды имеются заметные возвышения, образованные пирамидными путями. Мост состоит из большого количества поперечных волокон, которые образуют его белое вещество — нервные волокна. Между волокнами немало скоплений серого вещества, которое образует ядра моста. Продолжаясь до мозжечка, нервные волокна образуют его средние ножки.

Мозжечок[править | править код]

Мозжечок (лат. cerebellum) лежит на задней поверхности моста и продолговатого мозга в задней черепной ямке. Состоит из двух полушарий и червя, который соединяет полушария между собой. Масса мозжечка 120—150 г.

Мозжечок отделяется от большого мозга горизонтальной щелью, в которой твердая мозговая оболочка образует шатер мозжечка, натянутый над задней ямкой черепа. Каждое полушарие мозжечка состоит из серого и белого вещества.

Серое вещество мозжечка содержится поверх белого в виде коры. Нервные ядра лежат внутри полушарий мозжечка, масса которых в основном представлена белым веществом. Кора полушарий образует параллельно расположенные борозды, между которыми есть извилины такой же формы. Борозды разделяют каждое полушарие мозжечка на несколько частей. Одна из частей — клочок, прилегающий к средним ножкам мозжечка, выделяется больше других. Она филогенетически древнейшая. Лоскут и узелок червя появляются уже в низших позвоночных и связаны с функционированием вестибулярного аппарата.

Кора полушарий мозжечка состоит из двух слоев нервных клеток: наружного молекулярного и зернистого. Толщина коры 1-2,5 мм.

Серое вещество мозжечка разветвляется в белой (на срединном разрезе мозжечка видно будто веточку вечнозеленой туи), поэтому её называют деревом жизни мозжечка.

Мозжечок тремя парами ножек соединяется со стволом мозга. Ножки представлены пучками волокон. Нижние (хвостовые) ножки мозжечка идут к продолговатому мозгу и называются ещё верёвчатыми телами. В их состав входит задний спинно-мозго-мозжечковый путь.

Средние (мостовые) ножки мозжечка соединяются с мостом, в них проходят поперечные волокна к нейронам коры полушарий. Через средние ножки проходит корково-мостовой путь, благодаря которому кора большого мозга воздействует на мозжечок.

Верхние ножки мозжечка в виде белых волокон идут в направлении среднего мозга, где размещаются вдоль ножек среднего мозга и тесно к ним примыкают. Верхние (черепные) ножки мозжечка состоят в основном из волокон его ядер и служат основными путями, проводящими импульсы к зрительным буграм, подбугровому участку и красным ядрам.

Ножки расположены впереди, а покрышка — сзади. Между покрышкой и ножками пролегает водопровод среднего мозга (Сильвиев водопровод). Он соединяет четвёртый желудочек с третьим.

Главная функция мозжечка — рефлекторная координация движений и распределение мышечного тонуса.

Средний мозг[править | править код]

Покров среднего мозга (лат. mesencephalon) лежит над его крышкой и прикрывает сверху водопровод среднего мозга. На крышке содержится пластинка покрышки (четверохолмие). Два верхних холмика связаны с функцией зрительного анализатора, выступают центрами ориентировочных рефлексов на зрительные раздражители, а потому называются зрительными. Два нижних бугорка — слуховые, связанные с ориентировочными рефлексами на звуковые раздражители. Верхние холмики связаны с латеральными коленчатыми телами промежуточного мозга с помощью верхних ручек, нижние холмики — нижними ручками с медиальными коленчатыми телами.

От пластинки покрышки начинается спинномозговой путь, который связывает головной мозг со спинным. По нему проходят эфферентные импульсы в ответ на зрительные и слуховые раздражения.

Большие полушария[править | править код]

Медиальная поверхность коры больших полушарий мозга человека

Головной мозг разделён бороздой на два больших полушария (Hemisphaerium cerebri): левое и правое. В большие полушария входят: кора большого мозга (плащ), базальные ганглии, обонятельный мозг и боковые желудочки. Полушария мозга разделены продольной щелью, в углублении которой содержится мозолистое тело, которое их соединяет. На каждом полушарии различают следующие поверхности:

  1. верхнебоковую, выпуклую, обращенную к внутренней поверхности свода черепа;
  2. нижнюю поверхность, расположенную на внутренней поверхности основания черепа;
  3. медиальную поверхность, с помощью которой полушария соединяются между собой.

В каждом полушарии есть части, которые наиболее выступают: впереди, — лобный полюс, сзади — затылочный полюс, сбоку — височный полюс. Кроме того, каждое полушарие большого мозга разделяется на четыре большие доли: лобную, теменную, затылочную и височные. В углублении боковой ямки мозга лежит небольшая доля — островок. Полушарие поделено на доли бороздами. Самая глубокая из них — боковая, или латеральная, ещё она называется сильвиевой бороздой. Боковая борозда отделяет височную долю от лобной и теменной. От верхнего края полушарий опускается вниз центральная борозда, или борозда Роланда. Она отделяет лобную долю мозга от теменной. Затылочная доля отделяется от теменной только со стороны медиальной поверхности полушарий — теменно-затылочной бороздой.

Полушария большого мозга извне покрыты серым веществом, образующим кору большого мозга, или плащ. В коре насчитывается 15 млрд клеток, а если учесть, что каждая из них имеет от 7 до 10 тыс. связей с соседними клетками, то можно сделать вывод о гибкости, устойчивости и надёжности функций коры. Поверхность коры значительно увеличивается за счет борозд и извилин. Кора филогенетическая является самой большой структурой мозга, её площадь примерно 220 тысяч мм2.

Мозг взрослого мужчины в среднем на 11—12% тяжелее и на 10% больше по объёму, чем женский[20][21]. Статистической разницы между соотношением размеров тела и мозга у мужчин и женщин не обнаружено[22][23]. Методы томографического сканирования позволили экспериментально зафиксировать различия в строении головного мозга женщин и мужчин[24][25]. Установлено, что мозг мужчин имеет больше связей между зонами внутри полушарий, а женский — между полушариями. Данные различия в структуре мозга были наиболее выражены при сравнении групп в возрасте от 13,4 до 17 лет. Однако с возрастом в мозгу у женщин количество связей между зонами внутри полушарий возрастало, что минимизирует ранее отчётливые структурные различия между полами[25].

В то же время, несмотря на существование отличий в анатомо-морфологической структуре мозга женщин и мужчин, не наблюдается каких-либо решающих признаков или их комбинаций, позволяющих говорить о специфически «мужском» или специфически «женском» мозге[26]. Есть особенности мозга, чаще встречающиеся среди женщин, а есть — чаще наблюдающиеся у мужчин, однако и те, и другие могут проявляться и у противоположного пола, и каких-либо устойчивых ансамблей такого рода признаков практически не наблюдается.

Пренатальное развитие[править | править код]

Развитие, происходящее в период до рождения, внутриутробное развитие плода. В пренатальный период происходит интенсивное физиологическое развитие мозга, его сенсорных и эффекторных систем.

Натальное состояние[править | править код]

Дифференциация систем коры головного мозга происходит постепенно, что приводит к неравномерному созреванию отдельных структур мозга.

При рождении у ребенка практически сформированы подкорковые образования и близки к конечной стадии созревания проекционные области мозга, в которых заканчиваются нервные связи, идущие от рецепторов разных органов чувств (анализаторных систем), и берут начало моторные проводящие пути[27].

Указанные области выступают конгломератом всех трех блоков мозга. Но среди них наибольшего уровня созревания достигают структуры блока регуляции активности мозга (первого блока мозга). Во втором (блоке приема, переработки и хранения информации) и третьем (блоке программирования, регуляции и контроля деятельности) блоках наиболее зрелыми оказываются только те участки коры, которые относятся к первичным долям, осуществляющим приём приходящей информации (второй блок) и формирующие исходящие двигательные импульсы (3-й блок)[28].

Другие зоны коры головного мозга к моменту рождения ребенка не достигают достаточного уровня зрелости. Об этом свидетельствует небольшой размер входящих в них клеток, малая ширина их верхних слоев, выполняющих ассоциативную функцию, относительно небольшой размер занимаемой ими площади и недостаточная миелинизация их элементов.

Период от 2 до 5 лет[править | править код]

В возрасте от двух до пяти лет происходит созревание вторичных, ассоциативных полей мозга, часть которых (вторичные гностические зоны анализаторных систем) находится во втором и третьем блоке (премоторная область). Эти структуры обеспечивают процессы перцепции и выполнение последовательности действий[27].

Период от 5 до 7 лет[править | править код]

Следующими созревают третичные (ассоциативные) поля мозга. Сначала развивается заднее ассоциативное поле — теменно-височно-затылочная область, затем, переднее ассоциативное поле — префронтальная область.

Третичные поля занимают наиболее высокое положение в иерархии взаимодействия различных мозговых зон, и здесь осуществляются самые сложные формы переработки информации. Задняя ассоциативная область обеспечивает синтез всей входящей разномодальной информации в надмодальное целостное отражение окружающей субъекта действительности во всей совокупности её связей и взаимоотношений. Передняя ассоциативная область отвечает за произвольную регуляцию сложных форм психической деятельности, включающую выбор необходимой, существенной для этой деятельности информации, формировании на её основе программ деятельности и контроль за правильным их протеканием.

Таким образом, каждый из трёх функциональных блоков мозга достигает полной зрелости в разные сроки и созревание идет в последовательности от первого к третьему блоку. Это путь снизу вверх — от нижележащих образований к вышележащим, от подкорковых структур к первичным полям, от первичных полей к ассоциативным. Повреждение при формировании какого-либо из этих уровней может приводить к отклонениям в созревании следующего в силу отсутствия стимулирующих воздействий от нижележащего поврежденного уровня[27].

С точки зрения кибернетики, мозг представляет собой гигантскую обучающуюся статистическую аналоговую машину из живых ионных элементов без жесткой структуры связей между элементами, с потребляемой мощностью около 25{\displaystyle 25} Ватт. Оценки объема памяти мозга у различных авторов колеблются от 106{\displaystyle 10^{6}} до 1016{\displaystyle 10^{16}} бит[29][30]. Высшая нервная деятельность заключается в работе с образами внешнего мира многоступенчатым иерархическим методом параллельной обработки информации[31][32]. Память мозга устроена по особому принципу — запоминаемая информация одновременно является адресом запоминания в коре головного мозга, причем запоминается не только информация, но и частота её повторения.[30] Соединения нейронов мозга образуют многоуровневую сетевую структуру[33].

Предпринимаются первые попытки создания математических моделей мозга на основе теории автоматов, нейронных сетей, математической логики, кибернетики[34][35][36]

Американские учёные попытались сравнить человеческий мозг с жестким диском компьютера и подсчитали, что человеческая память способна содержать в себе около 1 миллиона гигабайт (или 1 петабайт) (например, поисковая система Google обрабатывает ежедневно около 24 петабайт данных). Если учесть, что для обработки такого большого массива информации мозг человека тратит только 25 ватт энергии, его можно назвать самым эффективным вычислительным устройством на Земле[37].

Об этом мало кто догадывается, но одним из важнейших свойств мозга является его способность к построению моделей, как при попытках описания происходящих в природе процессов, так и для описания выдуманных абстрактных явлений, как осознанно, так и неосознанно. Поведение подавляющего большинства (если не всех) людей определяется именно созданными ими моделями (а в первую очередь предсказаниями, которые они дают) в процессе жизнедеятельности: как для социального взаимодействия, так и для профессиональной деятельности в какой-либо области. Интересно, что человек может поступать иррационально только по той причине, что он когда-то создал искажённую модель (которая даёт искажённые выводы) для какого-либо явления.

  1. Frederico A.C. Azevedo, Ludmila R.B. Carvalho, Lea T. Grinberg, José Marcelo Farfel, Renata E.L. Ferretti. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain (англ.) // The Journal of Comparative Neurology. — 2009-04-10. — Vol. 513, iss. 5. — P. 532—541. — doi:10.1002/cne.21974.
  2. Williams R. W., Herrup K. The control of neuron number. (англ.) // Annual review of neuroscience. — 1988. — Vol. 11. — P. 423—453. — doi:10.1146/annurev.ne.11.030188.002231. — PMID 3284447. [исправить]
  3. Azevedo F. A., Carvalho L. R., Grinberg L. T., Farfel J. M., Ferretti R. E., Leite R. E., Jacob Filho W., Lent R., Herculano-Houzel S. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. (англ.) // The Journal of comparative neurology. — 2009. — Vol. 513, no. 5. — P. 532—541. — doi:10.1002/cne.21974. — PMID 19226510. [исправить]
  4. Евгения Самохина «Прожигатель» энергии // Наука и жизнь. — 2017. — № 4. — С. 22-25. — URL: https://www.nkj.ru/archive/articles/31009/
  5. Ho, KC; Roessmann, U; Straumfjord, JV; Monroe, G. Analysis of brain weight. I. Adult brain weight in relation to sex, race, and age (англ.) // Archives of pathology & laboratory medicine (англ.)русск. : journal. — 1980. — Vol. 104, no. 12. — P. 635—639. — PMID 6893659.
  6. ↑ Саган, 2005.
  7. Paul Brouardel. Procès-verbal de l’autopsie de Mr. Yvan Tourgueneff (неопр.). — Paris, 1883.
  8. W. Ceelen, D. Creytens, L. Michel. The Cancer Diagnosis, Surgery and Cause of Death of Ivan Turgenev (1818-1883) (англ.) // Acta chirurgica Belgica : journal. — 2015. — Vol. 115, no. 3. — P. 241—246. — doi:10.1080/00015458.2015.11681106.
  9. Guillaume-Louis, Dubreuil-Chambardel. Le cerveau d’Anatole France (фр.) // Bulletin de l’Académie nationale de médecine. — 1927. — Vol. 98. — P. 328—336.
  10. Elliott G. F. S. Prehistoriuc Man and His Story (неопр.). — 1915. — С. 72.
  11. Кузина С., Савельев С. От веса мозга зависит вес в обществе (неопр.). Наука: тайны мозга. Комсомольская правда (22 июля 2010). Дата обращения 11 октября 2014.
  12. Luders E., Narr K. L., Thompson P. M., Toga A. W. Neuroanatomical Correlates of Intelligence. (англ.) // Intelligence. — 2009. — 1 March (vol. 37, no. 2). — P. 156—163. — doi:10.1016/j.intell.2008.07.002. — PMID 20160919. [исправить]
  13. Witelson S. F., Beresh H., Kigar D. L. Intelligence and brain size in 100 postmortem brains: sex, lateralization and age factors. (англ.) // Brain : A Journal Of Neurology. — 2006. — February (vol. 129, no. Pt 2). — P. 386—398. — doi:10.1093/brain/awh696. — PMID 16339797. [исправить]
  14. ↑ Размер мозга и интеллект человека (из книги Р.Линна «Расы. Народы. Интеллект»)
  15. Hunt, Earl; Carlson, Jerry. Considerations relating to the study of group differences in intelligence (англ.) // Perspectives on Psychological Science (англ.)русск. : journal. — 2007. — Vol. 2, no. 2. — P. 194—213. — doi:10.1111/j.1745-6916.2007.00037.x.
  16. Brody, Nathan. Jensen’s Genetic Interpretation of Racial Differences in Intelligence: Critical Evaluation // The Scientific Study of General Intelligence: Tribute to Arthur Jensen (англ.). — Elsevier Science, 2003. — P. 397—410. — doi:10.1016/B978-008043793-4/50057-X.
  17. Wicherts, Jelte M.; Borsboom, Denny; Dolan, Conor V. Why national IQs do not support evolutionary theories of intelligence (англ.) // Personality and Individual Differences (англ.)русск. : journal. — 2010. — January (vol. 48, no. 2). — P. 91—96. — doi:10.1016/j.paid.2009.05.028.
  18. Wicherts, Jelte M.; Borsboom, Denny; Dolan, Conor V. Evolution, brain size, and the national IQ of peoples around 3000 years B.C (англ.) // Personality and Individual Differences (англ.)русск. : journal. — 2010. — January (vol. 48, no. 2). — P. 104—106. — doi:10.1016/j.paid.2009.08.020.
  19. Дробышевский С. В. Глупеем ли мы? О причинах уменьшения мозга (неопр.). Архивировано 5 сентября 2012 года.
  20. O’Brien, Jodi. Encyclopedia of Gender and Society (неопр.). — Los Angeles: SAGE, 2009. — С. 343. — ISBN 1-4129-0916-3.
  21. Zaidi, Zeenat F. Gender Differences in Human Brain: A Review (неопр.) // The Open Anatomy Journal. — 2010. — Т. 2. — С. 37—55. — doi:10.2174/1877609401002010037.
  22. ↑ Kimura, Doreen (1999). Sex and Cognition. Cambridge, MA: MIT Press. ISBN 978-0-262-11236-9
  23. Ho, KC; Roessmann, U; Straumfjord, JV; Monroe, G. Analysis of brain weight. I. Adult brain weight in relation to sex, race, and age (англ.) // Archives of pathology & laboratory medicine (англ.)русск. : journal. — 1980. — Vol. 104, no. 12. — P. 635—639. — PMID 6893659.
  24. ↑ «Male and female brains wired differently, scans reveal», The Guardian, 2 December 2013
  25. 1 2 «How Men’s Brains Are Wired Differently Than Women’s» LiveScience, 02 December 2013
  26. Daphna Joel, Zohar Berman, Ido Tavor, Nadav Wexler, Olga Gaber. Sex beyond the genitalia: The human brain mosaic (англ.) // Proceedings of the National Academy of Sciences. — National Academy of Sciences, 2015. — 30 November. — P. 201509654. — ISSN 0027-8424. — doi:10.1073/pnas.1509654112.
  27. 1 2 3 Микадзе Ю.В. Нейрофизиология детского возраста. — Питер, 2008.
  28. ↑ Лурия А. Р., 1973
  29. Иванов С. Звезды в ладонях. — М., Детская литература, 1979. — c. 106
  30. 1 2 Теплов Л. Очерки о кибернетике. — М., Московский рабочий, 1963. — c. 322-347
  31. Лоскутов А. Ю., Михайлов А. С. Введение в синергетику. — М., Наука, 1990. — ISBN 5-02-014475-4. — с. 180-190
  32. Сапарина Елена Кибернетика внутри нас. — М., Молодая гвардия, 1962. — c. 61-161
  33. Даниэль Бассетт, Макс Бертолеро. Как материя становится сознанием // В мире науки. — 2019. — № 8/9. — С. 14—23.
  34. У. Р. Эшби Конструкция мозга. — М., ИЛ, 1962. — 398 с.
  35. М. Арбиб Мозг, машина и математика. — М., Наука, 1968. — 225 с.
  36. М. Арбиб Метафорический мозг. — М., Мир, 1976. — 295 с.
  37. ↑ Сколько в мозге гигабайт?
  • Саган, Карл. Драконы Эдема. Рассуждения об эволюции человеческого разума = Sagan, Carl. The Dragons of Eden. Speculations on the evolution of human intelligence / пер. с англ. Н. С. Левитина (1986). — СПб.: ТИД Амфора, 2005. — С. 265.
  • Блум Ф., Лейзерсон А., Хофстедтер Л. Мозг, разум и поведение. — М., 1988.
  • Davidson’s Principles and Practice of Medicine (англ.) / Colledge; Walker, Brian R.; Ralston, Stuart H.; Ralston. — 21st. — Edinburgh: Churchill Livingstone/Elsevier, 2010. — ISBN 978-0-7020-3085-7.
  • John. Guyton and Hall Textbook of Medical Physiology (англ.). — 12th. — Philadelphia, PA: Saunders/Elsevier, 2011. — ISBN 978-1-4160-4574-8.
  • William J. Human Embryology (неопр.). — 3rd. — Philadelphia, PA: Churchill Livingstone (англ.)русск., 2001. — ISBN 978-0-443-06583-5.
  • Bogart, Bruce Ian; Victoria. Elsevier’s Integrated Anatomy and Embryology (англ.). — Philadelphia, PA: Elsevier Saunders, 2007. — ISBN 978-1-4160-3165-9.
  • G.; Richards, C. Human Physiology: The Basis of Medicine (англ.). — 3rd. — Oxford: Oxford University Press, 2006. — ISBN 978-0-19-856878-0.
  • Dale. Neuroscience (неопр.). — 5th. — Sunderland, MA: Sinauer associates, 2012. — ISBN 978-0-87893-695-3.
  • Larry. Fundamental Neuroscience (неопр.). — Waltham, MA: Elsevier, 2013. — ISBN 978-0-12-385-870-2.
  • Gray’s Anatomy: The Anatomical Basis of Clinical Practice (англ.) / Susan. — 40th. — London: Churchill Livingstone (англ.)русск., 2008. — ISBN 978-0-8089-2371-8.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *